chemistry final review sheet

Chapter IO: States of Matter

kinetic molecular theory

- used to explain the properties of solids, liquids, and gases in terms of the energy of particles and the forces that act between them
- based on the idea that particles of matter are always in motion
- ideal gases are hypothetical gases that perfectly fit all assumptions of the kinetic molecular theory

assumptions of kmt

- 1. particles are tiny and far apart from each other a. most volume occupied by a gas is empty space
- 2. collisions between gas particles and between particles and container walls are elastic collisions
 - a. no net loss of KE
- 3. gas particles have kinetic energy and are in continuous, rapid, random motion
- 4. attractive forces between gas particles do not exist
- 5. gases at same temperature have the same average kinetic energy

properties of gases

- expansion: gases do not have definite shape or volume
 - o completely fill an enclosed container
- fluidity: particles glide past each other because of insignificant attractive forces between particles
 - o both liquids and gases are *fluids*
- low density: a gas's density equals about 1/1000 of a liquid or solid density of the same substance.
- compressibility: decrease space between particles so they move closer together
- diffusion: spontaneous mixing of particles caused by their random motion
 - o rapid, random and continuous motion of the gas molecules
- effusion: gas particles pass through tiny openings
 - effusion rates of different gases are directly proportional to the velocities of the particles (low mass effuse faster)
- real gas: gas that does not behave completely according to the assumptions of the KMT
 - o all gases deviate from ideal to some degree
 - more polar = more deviation
 - o high temp, low pressure needed to turn gas into ideal gas

properties of liquids

liquids are a state of matter with definite volume that takes the shape of its container

- attractive forces between particles in a liquid are more effective than those between particles in a gas
 - attraction between liquid particles are caused by their intermolecular forces (london, dipole-dipole, h-bond)
- fluid: a substance that can flow and take the shape of its container
- high density: 100x denser than gas at normal atmospheric pressure
- incompressible: less compressible than gases, more closely packed together
- diffusion: liquids gradually diffuse throughout any other liquid in which it can dissolve
 - o much slower than diffusion in gases be of attractive forces
 - o particles are closer together
 - o diffusion increases w/ higher temp. due to increased average KE
- surface tension: force that pulls adjacent parts of a liquid's surface together, decreasing surface area as much as possible
 - o stronger the attractive force, stronger the surface tension
- capillary action: attraction of the surface of a liquid to the surface of a solid
 - o pulls liquid molecules upward along surface (forms a meniscus)
 - o smile meniscus: adhesive forces (sticks to other things) are stronger
 - o frown meniscus: cohesive forces (sticks to each other) are stronger

·)

properties of liquids (cont.)

- vaporization: a liquid or solid changes to a gas
- evaporation & boiling: particles escape from the surface of a non boiling liquid and enter the gas state
 - boiling: change of a liquid to bubbles of vapor that appear throughout the liquid
 - evaporation ONLY occurs at the surface (bc particles of a liquid have different KEs)
- freezing: the physical change of a liquid to a solid by removal of energy as heat
 - o as liquid is cooled, average energy of particles decreases

properties of solids

- particles: much more closely packed than liquid or gas
 - stronger interparticle attraction (they hold particles in relatively fixed positions)
 - o more ordered than liquids, much more ordered than gases
- high density: most substances are densest in the solid state
- incompressible: for practical purposes, solids = incompressible
- diffusion: the date of diffusion in solids is millions of times slower than in liquids
- types: amorphous and crystalline solids
 - amorphous solids are super cooled liquids and its particles are arranged randomly
 - o crystalline solids have orderly, geometric, repeating particles

of energy as heat

properties of solids (cont.)

- melting: the physical change of a solid to a liquid by the addition
 - o definite melting point: temperature at which solid becomes a liquid
 - o amorphous solids have no definite melting point (glass, plastic)
 - retain liquid properties even at solid temperatures
- crystal structure & lattice: the total three-dimensional arrangement of particles of a crystal

binding forces

crystal structures can be described using the types of binding forces

- ionic: positive and negative ions arranged in a regular pattern
 - o ionic crystals form when metals combine w/ nonmetals or polyatomic ions
- covalent network: each atom is covalently bonded to its nearest neighboring atoms
 - o extends throughout a network that includes a very large number of atoms
 - o very hard and brittle, high melting points, non- or semi-conductors
- metallic crystals: metal cations surrounded by a sea of delocalized electrons
 - o freedom of the delocalized electrons explains high conductivity
- covalent molecular crystals: covalently bonded molecules held together by intermolecular forces
 - o low melting points, easily vaporized, relatively soft, good insulator

changes of state

vocabulary

- phase: any part of a system that has uniform composition and properties
- condensation: gas changes to a liquid
- vapor: a gas in contact with its liquid or solid phase
- equilibrium: dynamic condition in which two opposing changes occur at equal rates in a closed system

equilibrium

- when rate of condensation = rate of evaporation, equilibrium is achieved
- static equilibrium: no activity, particles are not in motion
- dynamic equilibrium: moving, particles are in motion
- equilibrium vapor pressure: pressure exerted by a vapor in equilibrium with its corresponding liquid at a given temperature
 - o increases with temperature because of increase in KE
 - every liquid has a specific equilibrium vapor pressure at a given temperature
 - equilibrium vapor pressure determines the strength of the binding force (inverse relationship)
- volatile liquids evaporate readily due to relatively weak forces of attraction between their particles
- nonvolatile liquids do not evaporate readily

changes of state

boiling

- conversion of a liquid to a vapor within the liquid as well as at its surface
- boiling point: when equilibrium vapor pressure = atm pressure
 - o 1 atm, 760 torr, 101.3 kPa
- energy must be continually added to keep a liquid boiling
 - o but temperature remains constant bc excess energy breaks bonds
- molar enthalpy of vaporization: energy released when one mole is vaporized
 - o each liquid has a characteristic enthalpy of vaporization

freezing & melting

- freezing point: temp when solid and liquid are at equilibrium (1 atm, 760 torr, 101.3 kPa)
 - o particles of solid and liquid have the same KE
- melting also occurs at constant temperature
 - o solid + energy = liquid
- at equilibrium, melting and freezing rates are equal
- at normal atmospheric pressure, temperature of a system with ice and liquid will remain at 0°C

changes of state

sublimation & deposition

- at sufficiently low temperature and pressure conditions, a liquid cannot exist
 - o a solid substance exists in equilibrium with its vapor instead of liquid
- change of state from solid to gas is sublimation
 - ex: dry ice (CO2), iodine
- reverse of sublimation is deposition (gas to solid)

phase diagrams

- graph of pressure versus temperature that shows the conditions under which the phases of a substance exist
- triple point: indicates the temperature and pressure conditions at which the solid, liquid, and vapor of the substance can coexist at equilibrium
- critical point: indicates the critical temperature and critical pressure
 - o furthest right point on a line segment
- critical temperature: temperature above which the substance cannot exist in the liquid state
- critical pressure: the lowest pressure at which the substance can exist as a liquid at the critical temperature
- supercritical fluid: northeast of the critical point, not quite a liquid or a gas
- negative slope: less dense as a solid than liquid
- positive slope: more dense as a solid than liquid

Chapter II: Gas Laws

important constants/conversions

- Celsius to Kelvin: K = °C + 273 *always convert to Kelvins*
- pressure: 1 atm = 760 torr, 101.3 kPa, 760 mmHg
- STP: molar volume = 22.4 L, pressure = 1 atm, temperature = 0°C
- R = 0.0821 (L*atm)/(mol*K) or R = 62.4 (L*mmHg)/(K*mol)

equations

Dalton's Law of Partial Pressure: Ptotal = P1 + P2 + P3

Boyle's Law: P1*V1 = P2*V2 (k = PV)

Charles' Law: V1/T1 = V2/T2 (k = V/T)

Gay Lussac's Law: P1/T1 = P2/T2 (k = P/T)

Combined Gas Law: (P1*V1)/T1 = (P2*V2)/T2

Ideal Gas Law: PV = nRT; mm = dRT/p

Avogadro's Law: V = kn

Graham's Law of Effusion/Diffusion: rate of effusion of A/rate of

effusion of B = sqrt(MB/MA)

Chapter 12: Solutions

heterogeneous vs. homogenous

- homogenous: fully uniform
- heterogeneous: not fully uniform

solution vs. colloid vs. suspension

- solution:
 - Does not separate on standing or filtration
 - Does not scatter light
 - Clear (but not colorless)
 - Particles < 1nm
- colloids:
 - heterogeneous
 - Scatters light (Tyndall effect)
 - Clear or a bit translucent
 - o Particles 1-1000nm
- suspensions:
 - heterogenous
 - particles settle out and filter out
 - two "distinct" phases
 - Particles > 1000 nm

solubility

electrolytes

- electrolyte a substance that dissolves in water and conducts electric current
 - o ionic compounds
 - o acids
- nonelectrolyte dissolves in water to give a solution that does not conduct electronic current
 - o sugar
- strong electrolytes conduct more electricity than weak electrolytes

rate of dissolution

- to increase rate of dissolution, collisions must be maximized
- increase in surface area of solute
- stirring or shaking of solution
- high temperatures
 - o applies only to solids in liquids, liquids in liquids, and liquids in solids
- increase in pressure
 - increases gas solubility
 - increases collisions
 - particles collide with liquid surface causing more gas particles to dissolve in liquid
 - decreasing pressure allows gas to escape solution

solubility

solution equilibrium

- physical state where process of dissolution and crystalization occur at same rates
- solubility depends on:
 - temperature
 - o nature of solute/solvent
- unsaturated solution: contains less solute than saturated solution in same conditions
- supersaturated: holding more solute than it should be holding
 - made by increasing temperature then decreasing it slowly
- solubility: g solute per g solvent at specific temperature

"like dissolves like"

- polar dissolves polar
 - o ex: acids, water
- nonpolar dissolves nonpolar
 - o -ane, -yne, -ene are all nonpolar
- immiscible liquids are not soluble in each other
- miscible liquids dissolve freely in one another

solubility

ionic compound dissolution in H20

- water has a permanent net dipole
- charged parts of water molecules attract ionic compounds and surround them, separating them and drawing them into the solution
- dipole dipole bonding may not be enough to break crystal lattice
 - o ex: carbon monoxide

enthalpy of solution

- solute particles are separated from solid (energy is absorbed)
- solvent particles move apart to allow solute to enter solvent (energy absorbed)
- solvent particles are attracted to solute particles (energy released)
 - enthalpy negative when last step is greater than other two
 - exothermic: warms outside, enthalpy negative, more energy released
 - endothermic: cools outside, enthalpy positive, more energy absorbed

important formulas

concentration

- a measure of solute in a given amount of solvent or solution
- percent by mass: (g solute/g solution)*100
- percent by volume: (mL solute/mL solution)*100
- percent by mass/volume: (g solute/L solution)*100
- molarity (M): (mol solute/L solution)

dilutions

- add solvent to solution with too much solute
- concentration vs. dilute
 - concentration --> more solute
 - dilute --> more solvent
- mass (concentrated)*volume (concentrated) =
 mass(dilute)*volume(dilute)
 - o in moles
- molality (m): mol solute/kg solvent
- mole fraction: mol of substance/mol of solution

important formulas

making a solution

- need to know amount and concentration of solution
- use a volumetric flask that's the same volume as volume of solution you need to make
- calculate amount of solute (molar mass of solute * L of solution * M)
- mass amount of solid solute in a balance with a weighing boat
- pour cushion of distilled water into volumetric flask
- use funnel to transfer solid solute to volumetric flask
- use wash bottle to clean off solute stuck to weighing boat, transfer it into the volumetric flask
- cap and swirl/invert volumetric flask
- uncap and fill the volumetric flask with distilled water to the etched line w/ a pipette or dropper

cap and swirl/invert volumetric flask

spectrophotometry

- spectrophotometer: transmits a beam of colored light to detect amount of light absorbed by sample and amount transmitted
- when things are dissolved in water, their absorption changes and causes different frequencies of lights to be transmitted
- when something absorbs color, it transmits another beam

important formulas

beer-lambert's law

- use to relate absorbance to concentration
- A = Ebc
 - A = absorbance
 - b = path length
 - c = concentration
 - E = molar absorptivity constant
- linear in most cases except...
 - o sample is too concentrated
 - scattering of light
 - if sample fluoresces (produces its own light)
 - o if radiation is non-monochromatic
 - if there is stray light
 - from forgetting to close lid

yay! we're done with chapter 12

Chapter 13: Solubility Rules and Colligative Properties

solubility rules

- soluble:
 - group 1 cations (Li+, Na, K, Rb, Cs) and ammonium (NH4)
 - NO exceptions
 - nitrate anion (NO3-), acetate ion (C2H3O2-), chlorate anion (ClO3-), or perchlorate anion (ClO4-)
 - NO exceptions
 - Halides (Cl-, Br, I-)
 - exceptions: silver (Ag+), mercurous/mercuric (Hg), plumbous/plumbic (Pb), calcium (Ca2+), strontium (Sr2+), barium (Ba2+)
- insoluble:
 - carbonate (CO3), phosphate (PO4), chromate (CrO4)
 - exceptions: group 1 cations, ammonium
 - sulfide (S2-)
 - exceptions: group 1 and 2 cations, calcium, strontium, barium, or ammonium
 - hydroxide (OH-)
 - exceptions: group 1 cations, calcium, strontium, barium, or ammonium

colligative properties

vapor pressure lowering

- vaporization caused by particles leaving from surface
- with more solute, top is being blocked, which lowers amount of stuff trying to leave --> lowers vapor pressure
- Raoult's Law: Psoln = Xsolvent*P0
 - PsoIn = pressure of solution
 - Xsolvent = mole fraction of solvent
 - PO = vapor pressure of the pure solvent

boiling point elevation

- with lower vapor pressure, more energy is needed to boil
- raises boiling point
- change in bp = Kbm
 - Kb = molal boiling point constant
 - o m = molality of solution

freezing point depression

- with solute in the way, it becomes difficult to freeze
- need to lose more energy before freezing
- this decreases freezing point
- change in fp = Kfm
 - Kf = molal freezing point constant
 - o m = molality of solution

colligative properties

osmotic pressure

- osmosis: water moves from lower solute to higher solute concentration
- osmotic pressure: external pressure needed to stop osmosis
- Π = MRT
 - Π: osmotic pressure in atm
 - M: molarity of solution
 - R: gas constant
 - T: temperature in Kelvin

Van't Hoff's Factor

- since electrolytes and ionic compounds fully dissociate, they have more than one solute in the solution
- i = number of dissolved particles
 - ex: NaCl --> i = 2
- changes values for colligative properties
 - \circ change in bp = iKbm, change in fp = iKfm, Π = iMRT

remember how to write net ionic equations!!!

Chapters 14/15: Acids and Bases

acid vs. base

- acids:
 - tase sour
 - reacts with active metals to form hydrogen gas + ionic compound
 - single replacement (use activity series)
 - ex: 6HCl + 2Al -> 2AlCl3 + 3H2
 - acids are electrolytes
 - change in color of indicator
 - red in litmus
 - colorless in phenolphthalein
- bases:
 - taste bitter
 - feel slippery like soap
 - bases are electrolytes
 - change in color of indicator
 - blue in litmus
 - pink or magenta in phenolphthalein
- acids and bases together form salt

acid naming conventions

- oxyacid: an acid that contains oxygen
- acid names:
 - ite --> ouse
 - o ic --> ate
 - H2SO4: sulfuric acid
 - HNO2: nitrous acid

arrhenius' definition

- acids vs. bases are based on how they react in water
- acid --> increased concentration of [H+]
- base --> increased concentration of [OH-]
- neither means it's neutral

acid/base strength

- strong acid very low pH (fully dissociates)
 - more conductive
- weak acid low pH
 - o polar
- strong base very high pH (fully dissociates)
 - more conductive
- weak base low pH
 - o polar

strong acids and bases

- strong acids:
 - Imagine a Perfectly Clear Breezy Summer Night
 - HI hydroiodic acid
 - HClO4 perchloric acid
 - HCl hydrochloric acid
 - HBr hydrobromic acid
 - H2SO4 sulfuric acid
 - HNO3 nitric acid
- strong bases:
 - group 1 and group 2 hydroxides
 - LiOH lithium hydroxide
 - NaOH sodium hydroxide
 - KOH potassium hydroxide
 - RbOH rubidium hydroxide
 - CsOH cesium hydroxide
 - Ca(OH)2 calcium hydroxide
 - Sr(OH)2 strontium hydroxide
 - Ba(OH)2 barium hydroxide

bronsted-lowry

- acid: proton donor
- base: proton acceptor
- conjugate base: base that "took" a proton
- conjugate acid: acid that lost a proton
- ex: H2SO4 + H2O --> HSO4- + H3O+
 - H2SO4: acid, H2O: base, HSO4-: conjugate base, H3O+:
 conjugate acid

lewis

- acids: electron acceptors
- bases: electron donors
- since there's no protons involved, it applies to reactions that don't involve hydrogen
- BH3 (g) + NH3 (g) --> H3BNH3

amphoteric compounds

- acts as an acid or base
 - o can donate or accept a proton
- has to be weak
- can react with itself
- H2O + H2O --><-- OH- + H3O+

neutralization

- when acids and base mix, a salt is formed
- strong-strong (HCl and NaOH):
 - H+ + Cl- + Na+ + OH- --> Na+ + Cl- + H2O
 - o cancel out: H+ + OH- --> H2O
- weak-strong (HF and NaOH):
 - HF (aq) + OH- --> H2O (l) + F- (aq)
- strong-weak (HCl and NH3):
 - H+ (aq) + NH3 (aq) --> NH4+ (aq)
- weak-weak (HF and NH3):
 - nothing cancels because nothing dissociates

pH and pOH

- pH > 7: basic
- pH < 7: acidic
- pH = 7: neutral
- pH = -log[H+]
- pOH = -log[OH-]
- pH + pOH = 14
- [H+][OH-] = 1.0 * 10^-14
- sigfig rule:
 - sigfigs in concentration is equal to number of decimal points in pH/pOH
 - [H+] = 1.0 * 10^-3: 2 sigfigs
 - opH = 3.00: 2 decimal places

indicators

- indicators are weak acids/bases
 - different color than conjugate base
- transition interval: each indicator has a pH range of values in which it will change color

titration

 controlled addition of an acid/base of known concentration to a known volume of acid/base with unknown concentration

STEPS:

- 1. take disposable pipette and add about an inch of base into buret, tilt slightly
- 2. swirl buret to coat entire buret w/base
- 3. repeat three times (inch of base, swirl, dump into sink)
- 4. repeat process with acid and volumetric pipet (three times)
- 5. take erlenmeyer flask, add water cushion
- 6. use volumetric pipet to put 10 mL of acid of unknown concentration in flask
- 7. add two drops of indicator
- 8. swirl to ensure complete dispersion
- 9. introduce base in buret
- 10. open valve and get rid of air bubbles
- 11. close buret w/stopper
- 12. record initial volume of base
- 13. record final volume once a color change appears (endpoint happened)

Chapter 16: Reaction Energy

important terms/units

- temperature: measure of average kinetic energy
 - o in Kelvin or Celsius
- energy: capacity to do work or produce heat
- heat (q): energy transferred to motion of atoms and molecules
 - transfer of energy from high to low temps
 - Joule (J) = kg*m2/s2
 - calorie (c): amount needed to raise temperature of 1 gram of water by one degree Celsius
 - Calorie (C): 1000 c = 1kcal
 - 1 calorie = 4.184 J
 - 1 Calorie = 4184 J
- work: energy transferred to the motion of objects

enthalpy change

- amount of energy absorbed by a system at constant presure -->
 measure via change in temperature
- physical and chemical:
 - o enthalpy of vaporization or fusion: physical change
 - o enthalpy of reaction: chemical change
- state function: depends on only beginning and end
 - ONLY initial and final states are important, path in between is irrelevant

specific heat capacity

- amount of heat it takes to change the temperature of one gram of a substance by 1 degree Celsius
- q = mcΔT
 - o q = heat
 - \circ m = mass in grams
 - c = specific heat capacity
 - ΔT = change in temp (final initial)
- calorimetry: process of measuring amount of heat released or absorbed during a chemical reaction
 - -(qlost) = qgained
 - \circ -(mc Δ T) = mc Δ T

change of state

- exothermic:
 - heat flows out
 - bonds are formed
 - o freezing, condensation, deposition
- endothermic:
 - heat flows in
 - bonds are broken
 - o melting, vaporization, sublimation
- heat of fusion:
 - o melting/freezing
 - energy needed to go from solid to liquid and vice versa
 - J/g or J/mol
 - ∘ ∆Hfus
 - first plateau in graph
- heat of vaporization:
 - vaporization/condensation
 - energy needed to go from liquid to gas and vice versa
 - J/g or J/mol
 - ∘ ∆Hvap
 - o second plateau in graph

thermochemical equations

- find change in enthalpy
 - o pressure is constant
- ΔH = q
 - ΔH change in heat of reaction
- enthalpy: heat gained or lost by the system
- if ΔH is negative, heat energy is released
- standard state:
 - o 25 degrees C, 298 K, 1 atm, 101.3 kPa
- ullet enthalpy change for reaction (ΔH): sum of products sum of reactants
- standard enthalpy of formation (ΔHf) energy change for formation of one mole of a compound from its elements at standard state
- \bullet enthalppy of combustion ($\Delta Hc)$ energy change when one mole of a compound reacts with O2
- the more stable it is, the more energy it takes to break

hess'law

• crossing out/switching of chemical formulas to find ΔH that we want

$$CO_{2(g)} \rightarrow C_{(s)} + O_{2(g)}$$
 $\Delta H = 393.5 \text{ kJ/mol}$ $\Delta H = 74.6 \text{ kJ/mol}$ $\Delta H = 74.6 \text{ kJ/mol}$ $\Delta H = -484.3 \text{ kJ/mol}$ $\Delta H = -484.3 \text{ kJ/mol}$ $\Delta H = 393.5 + 74.6 + (-484.3)$ $\Delta H = -484.3 \text{ kJ/mol}$

entropy

- measure of relative disorder/chaos (S)
- Sgas >>> Sliquid > Ssolid, Saq > Ss
- state function
 - \circ ΔS° reaction = ΣnpS° products ΣnrS° reactants
 - ∘ ∆S > 0: increasing disorder
 - ∘ ∆S < 1: decreasing disorder
- low pressure leads to higher entropy
- more bonds --> less chaos --> less entropy

gibbs free energy

- amount of energy in a system available to do useful work (g)
- ΔG = ΔH (kJ/mol) T (K) * ΔS (J/mol*K)
 - o note: parentheses denote units, not multiplication
 - ∘ if ∆H > T∆S...enthalpy-driven
 - \blacksquare $\Delta G > 0$, process not spontaneous
 - if ΔH < TΔS...entropy-driven
 - $\Delta G < 0$, process is spontaneous
- $-\Delta G$ --> free energy decreases, spontaneous reaction
- $+\Delta G$ --> free energy decreases, spontaneous reaction
- ullet 0 ΔG : equilibrium state, no discernable change in either direction

ΔH	Δ S	∆ G	Is the reaction spontaneous?
Negative	positive	negative	yes, at all temperatures
Negative	negative	either positive or negative	only if $T < \Delta H/\Delta S$
Positive	positive	either positive or negative	only if $T > \Delta H/\Delta S$
Positive	negative	positive	never

Chapter 17: Reaction Kinetics

important terms/units

- reaction mechanism:
 - series of steps in complex reaction
 - same beginning and end substances
 - determined experimentally
- rate-determining step:
 - slowest part of reaction
 - sets pace for reaction
- intermediate:
 - substance produced in a mechanism
 - o appears as a product, later as a reactant
 - does not appear as reactant of final products
- catalyst: speeds up reaction
 - increases rate of reaction by targeting rate-determining step
 - does not appear in overall final reaction

reactants: O3, product: O2, catalyst: Cl,

intermediate: ClO

reaction mechanism graph

- exothermic: less energy in products than reactants
- # steps: 3 --> number of peaks
- rate determining step: second peak because it has largest energy difference
- activation energy: energy difference from previous valley to top of hill

collision theory

- molecules collide for reactions to occur
- two requirements:
 - must have sufficient energy or else they bounce off
 - o must approach in the correct orientation
 - collisions that are too gentle or in poor orientation will not result in a reaction

activated complex (transition state)

- short-lived substances (old bonds broken and new bonds formed)
- transition state lives less than intermediate state
- so fragile it could fall apart
- could easily go backwards and form reactants
- activation energy (Ea): amount of energy needed for an effective collision to lead to the transition state
 - used to collide particles and achieve a transition state
 - measured from bottom of valley to top of hill
 - slow step has greatest Ea magnitude
 - o graph goes down: exothermic
 - o graph goes up: endothermic

reaction rate

• chemical kinetics: branch of chemistry that studies reaction rate and mechanisms

these factors affect reaction rate...

- nature of reactants
 - group 1 metals are more reactive than group 2 metals so activation energy is lower for collision
- concentration:
 - o more concentration = more collisions = more effective collisions
- surface area:
 - larger surface area = more collisions
- temperature
 - o increase temperature = move faster = more collisions
- catalysts decrease activation energy, which lowers the "hill"

catalysts

- reduce activation energy for a chemical reaction
- homogenous: catalysts are in same state as reactants
- heterogeneous: catalysts are in a different state than reactants
 - if there are multiple reactants in different states, we cannot categorize them into homogenous or heterogeneous

rate law

- rate law = k[A]^m[B]^n
 - k = rate constant for reaction (determined experimentally)
 - A and B are reactants
 - reaction order: exponents (m and n)
 - o total order: sum of reaction order
 - 1st order: when exponent = 1 (reaction occurs in FIRST order w/ respect to exponent's base)
 - direct relationship between concentration and rate law
 - 2nd order: when exponent = 2 (reaction occurs in SECOND order w/ respect to exponent's base)
 - square relationship w/ concentration
 - Oth order: when exponent = 0 (reaction occurs in the ZEROTH order w/ respect to exponent's base)
 - does not relate to the experiment
 - found by dividing known rates

rate constant (k)

- once orders are known, plug in to find k
- units depend on order
 - keep rate in M/s
- temperature dependent
 - temp increase --> k increases and vice versa

validity

- elementary steps must sum to overall reaction
 - o intermediates and catalysts cancel out
 - o coefficients must be correct
- rate law of slow step (rate-determining step) must equal overall rate

